在微分几何和拓扑学中,人们常常处理微分方程组和偏微分不等式,它们不管加上什么边界条件总有无穷多个解。在1950年代人们发现,这种类型的微分关系(即等式或不等式)的可解性常常可以化为一个纯粹的具同伦论性质的问题。在此情形下人们说:相应的微分关系满足 h-原理。h-原理的两个著名例子是:黎曼几何中Nash-Kuiper的 C1-等度嵌入理论和微分拓扑中的Smale-Hirsch浸没理论,它们后来被Gromov转换为建立h-原理的强有力的一般方法。作者介绍了h-原理的两个主要证明方法:完整
《微分几何(修订版)》以经典微分几何为主,同时也适当地介绍一些整体微分几何的概念。经典微分几何主要是三维欧氏空间的曲线和曲面的局部性质的基本内容;整体微分几何内容包括平面和空间曲线的一些整体性质,以及曲面的一些整体性质,同时简单地介绍了微分流形和黎曼流形的一些概念。
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性公理,引理及其应用,紧致性与列紧性,局部紧性与仿紧性,连通性,道路连通性,商映射与商空间,几个典型曲面与闭曲面分类定理,点网与滤子,函数空间,映射的同伦与基本群的定义,球面的基本群,基本群的同伦不变性,基本群的计算,同伦提升定理与映射提升定理,复叠空间及其基本性质,复叠变换与正则复叠空
“数学王子”高斯在对大地测量的研究中创立了关于曲面的新的理论,并于1827年写成了这一领域的光辉著作《曲面的一般研究》。本书全面阐述了三维空间中的曲面微分几何,并开创了内蕴曲面理论。书中一系列的概念和定理充分而完整地反映了高斯的微分几何观念,远远超越了前辈欧拉在这一领域所作的工作,决定了这一学科以后的发展方向。这一理论后来被黎曼所发展,并成为了爱因斯坦广义相对论的基础。陈省身先生评价道:“微分几何的始祖是C. F. 高斯。他的曲面论建立了曲面的第一基本形式所奠定的几何,并把欧氏
平台介绍|荣誉资质|联系我们|出版社登陆