化工过程模拟:绿色、节能与精密控制(Chemical Process Simulation:Green,Energy Saving and Precise Control)
					
					 定  价:59 元   本教材已被 2 所学校申请过!
					 丛书名:
					 
				  
   
			
				 
				 
				
				
				 
	
				
				
					
						- 作者:王英龙、崔培哲、田文德  编著
- 出版时间:2019/11/1
- ISBN:9787122357243
- 出 版 社:化学工业出版社
 
			
				
							适用读者:《Chemical Process Simulation》可作为高等院校化工等相关专业研究生的教学参考书,也可供从事化工过程开发与设计的工程技术人员参考。
				
	
			
  
 - 中图法分类:TQ018 
- 页码:225
- 纸张:
- 版次:01
- 开本:16开
- 字数:(单位:千字)
 
 
	 
	 
	 
	
	
	
				
					
		
		《Chemical Process Simulation》将研究生学术思维训练与过程模拟实践相结合,旨在提高研究生的科学认知与工程实践能力。本书利用GROMACS, Materials Studio, Aspen Plus, MATLAB等软件,从分子动力学、相平衡、稳态模拟及动态控制等方面,重点阐述化工过程模拟的绿色、节能与精密控制技术。本书共11章内容,第1章主要介绍汽液平衡和液液平衡实验数据的回归,第2章主要介绍离子液体相行为及其热力学性质的预测,离子液体在分离混合物方面的应用,第3~5章主要介绍过程强化与集成方面的实例,主要包括膜分离、热集成、热耦合、热泵隔壁塔精馏技术,第6~11章主要介绍了萃取精馏、变压精馏、间歇精馏及反应精馏等精馏过程的动态控制案例。
《Chemical Process Simulation》可作为高等院校化工等相关专业研究生的教学参考书,也可供从事化工过程开发与设计的工程技术人员参考。
		
	
Chapter 1  Simulation of Vapor-liquid and Liquid-liquid Equilibrium for Binary/ Ternary Systems
1.1  Introduction / 1
1.2  Data Regression of Binary System / 1
1.3  Data Regression of Ternary System by NRTL / 8
1.4  Data Regression of Ternary System by UNIQUAC / 11
References / 13
  
Chapter 2  Application of Green Solvents in Absorption and Extraction
2.1  Introduction / 14
2.2  Molecular Dynamics Simulation / 14
2.2.1  Generating GROMACS Supported Files / 15
2.2.2  Defining the Unit Box and Filling Solvent / 20
2.2.3  Energy Minimization / 22
2.2.4  NVT Balance / 24
2.2.5  NPT Balance / 26
2.2.6  Finishing MD / 27
2.2.7  Analysis / 28
2.3  Simulation of Extractive Distillation Using the Ionic Liquid / 30
2.3.1  Analysis of Correlation Model / 30
2.3.2  Definition of the Ionic Liquid in Aspen Plus / 32
2.4  Simulation of CO2 Absorption Using the Ionic Liquid / 37
2.4.1  Calculation of σ-profile Value / 38
2.4.2  Definition of the Ionic Liquid in Aspen Plus / 43
2.4.3  Simulation of CO2 Capture Using the Ionic Liquid / 44
2.5  Simulation of Extractive Distillation Using Deep Eutectic Solvents / 49
2.5.1  Definition of Deep Eutectic Solvents in Aspen Plus / 50
2.5.2  Process Simulation / 52
References / 54
  
Chapter 3  Membrane Separation Process
3.1  Introduction / 56
3.2  Principle of Membrane Separation / 56
3.3  Separation of DMSO-water Using Membrane / 57
References / 64
  
Chapter 4  Heat-integration and Thermally Coupled Distillation
4.1  Introduction / 65
4.2  Steady-state Simulation of THF-methanol System with Heat- integration / 66
4.2.1  Simulation without Heat-integration / 66
4.2.2  Simulation with Partial Heat-integration / 70
4.2.3  Simulation with Full Heat-integration / 73
4.3  Thermally Coupled Distillation Process / 76
4.4  Energy-saving Thermally Coupled Ternary Extractive Distillation Process / 78
References / 86
  
Chapter 5  Heat Pump Distillation for Close-boiling Mixture
5.1  Introduction / 88
5.2  Main Forms of Heat Pump Distillation / 88
5.3  Heat Pump Distillation Process of Binary System Close-boiling Mixture / 90
References / 99
  
Chapter 6  Energy-saving Side-stream Extractive Distillation Process
6.1  Introduction / 100
6.2  Steady-state Design of Side-stream Extractive Distillation / 100
6.3  Dynamic Control of Side-stream Extractive Distillation / 101
6.3.1  Control Structure with Side-stream Composition/Temperature Cascade Connection / 105
6.3.2  Control Structure with S/F and Composition Controller Connection / 105
6.3.3  Improved Dynamic Control Structure / 107
References / 112
  
Chapter 7  Pressure-swing Distillation for Minimum-boiling Azeotropes
7.1  Introduction / 113
7.2  Converting from Steady-state to Dynamic Simulation / 113
7.3  Control Structures of the Process without Heat-integration / 116
7.3.1  Basic Control Structure / 116
7.3.2  QR/F1 Control Structure / 127
7.3.3  Control Structures of the Process with FullHeat-integration / 128
References / 130
  
Chapter 8  Ternary Extractive Distillation System Using Mixed Entrainer
8.1  Introduction / 132
8.2  Converting from Steady-state to Dynamic Simulation / 132
8.3  Dynamic Control of Ternary Extractive Distillation Process Using Single Solvent / 135
8.3.1  Basic Control Structure / 135
8.3.2  Dual Temperature Control Structure / 140
8.3.3  Composition with Q R/F Control Structure / 142
8.4  Dynamic Control of Ternary Extractive Distillation Process Using Mixed Entrainer / 145
8.4.1  Basic Control Structure / 145
8.4.2  Composition with Q R/F Control Structure / 146
8.5  Comparisons of the Dynamic Performances of Two Processes / 148
References / 152
  
Chapter 9  Hybrid Process Including Extraction and Distillation
9.1  Introduction / 153
9.2  Solvent Selection / 153
9.3  Simulation of the Extraction Combined with Distillation Process / 155
9.3.1  Extraction Combined with Heterogeneous Azeotropic Distillation Process (LEHAD) / 155
9.3.2  Extraction Combined with Extractive Distillation Process (LEED) / 160
9.4  Dynamic Simulation of Hybrid Extraction-distillation / 164
9.4.1  Selection of Temperature-sensitive Trays / 164
9.4.2  Dynamic Control of the LEHAD Process / 167
9.4.3  Dynamic Control of the LEED Process / 174
9.5  Energy-saving Hybrid Process with Mixed Solvent / 181
9.6  Dynamics of Hybrid Process with Mixed Solvent / 185
9.6.1  Selection of Temperature-sensitive Trays / 185
9.6.2  Control Structure with Fixed Reflux Ratio / 187
References / 190
  
Chapter 10  Batch Distillation Integrated with Quasi-continuous Process
10.1  Introduction / 191
10.2  Feasibility of Pressure-swing Batch Distillation Based on the Ternary Residue Curve Maps / 191
10.3  Double Column Batch Stripper Process / 193
10.3.1  Design of Double Column Batch Stripper Process / 193
10.3.2  Control of Double Column Batch Stripper Process / 196
10.4  Triple Column Process / 201
10.4.1  Design of Triple Column Process / 201
10.4.2  Control of Triple Column Process / 202
References / 206
  
Chapter 11  Simulation of Chemical Reaction Process Based on Reaction Kinetics
11.1  Introduction / 207
11.2  Continuously Stirred Tank Reactor / 208
11.3  Simulation of Cyclohexanone Ammoximation Process / 209
11.3.1  Steady-state Simulation of Cyclohexanone Ammoximation Process / 209
11.3.2  Dynamic Simulation of Cyclohexanone Ammoximation Process / 209
References / 225